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Abstract 

 

We use GIS techniques to create variables for measuring the visibility value of coast, 

green areas and open space viewsheds in a spatial hedonic model of house prices. Data 

come from repeated house sales for the Haifa metropolitan area (Israel) for 1998-2016. 

A series of spatial lag models are articulated for identifying the viewshed effect 

conditioned on location. We disentangle viewshed-derived utility from that derived 

from proximity. The estimation results show visibility of coast and green areas add to 

the value of housing units regardless of location even though view is determined by 

proximity to these visual amenities. The results strengthen the conclusion that visibility 

effects are important determinants of house prices even in the presence of significant 

spatial spillover effects. 
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1. Introduction 

 

A scenic view is a residential amenity associated with the location of a dwelling. Many 

studies show that buyers are willing to pay a premium for sites with a view, see for 

example, Paterson and Boyle, 2002; Benson, et al, 1998; Do and Sirmans, 1994; 

Rodriguez and Sirmans, 1994; Cassel and Mendelsohn, 1985; Gillard, 1981; Plattner 

and Campbell, 1978. However, visibility is a multi-dimensional concept and no single 

metric can fully capture both the type of view and the range of vistas that if affords. 

Viewshed analysis offers a geometric approach to calculating visibility from a source 

point to a target point accounting for potential obstacles that might impede lines of 

sights such as differences in height, pointing angle, horizontal orientation etc. 

 

Amenity viewsheds are derived from different sources such as water, mountains and 

open-spaces. They are often measured by the quantity of view that is captured (Sander 

and Polasky 2009, Osland et al 2021). Many studies measure the value of visibility but 

fail to separate the effects of the utility derived from pure view with that derived from 

proximity to the amenity 1 . In the case of viewsheds, the price differences of an 

apartment close and distant to the coast can be explained by the view of the seashore as 

an amenity and by the lower accessibility costs of enjoying the beach. Previous studies 

identify the positive correlation between visibility and dwelling value but ignore the 

difference between the effect of visibility and proximity. In this paper, we address the 

hitherto unexplored interdependence of visibility and proximity in a spatial hedonic 

framework.  

 

We combine various sources to create a unique data base and utilize a large-scale repeat 

sales data set (n=47,885). To solve the viewshed identification problem, we propose 

two tentative approaches. The first is to utilize information on building elevation since 

this factor generally improves visibility but is independent of distance. We utilize the 

treatment effect by controlling different factors which may affect visibility like 

proximity to amenities and elevation. The second approach is the application of a SAR 

(spatial autoregression) model. We control for neighborhood effects that could affect 

visibility using the spatial lag of the dependent variable. We illustrate that the visibility 

effect can be identified if we include the average value of housing units in the same 

location. As local house prices are highly clustered and spatially correlated due to 

historical, demographic and geographical reasons, it is important to capture their 

spillover effects. 

 

The paper proceeds as follows. Section 2 takes stock of the approaches to viewshed 

analysis in the hedonic house price literature. We underline how the current study 

                                                   
1 A similar issue exists with respect to capitalizing the effect of schools into house prices (Gibbons and 

Machin 2008, Nguyen-Hoang and Yinger 2011). In this instance, the very different effects of proximity 

to a school and quality of a school tend to be confounded leading to diverse outcomes (see for example 

Fleishman et al 2017, Metz 2015). 
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extends the literature. In section 3 we present a theoretical analysis of the components 

of viewshed utility. This serves to disentangle viewshed utility from proximity utility. 

Section 4 presents the data, study area and the approach for measuring viewshed 

quantity. In this respect we assume viewshed quality and quantity are synonymous. 

More view is better than less and this capitalizes into higher house prices. Section 5 

presents the estimation strategy. Given the unbalanced panel and multi-level nature of 

the data, we present the motivation for adopting a spatial lag model with nested random 

effects. In section 6 the empirical results are discussed and their robustness is addressed 

in Section 7. Section 8 concludes.  

   

2. Visibility as a Determinant of House Prices 

 

Hedonic methods are based on a theory of consumer behavior that suggests that 

commodities are valued for their individual "utility-bearing" attributes or characteristics 

(Rosen 1974). A key assumption is that the housing market is competitive, and the 

commodity is highly differentiated. Since the housing market satisfies these two 

conditions, the price, P, is determined by the implicit vector prices of a dwelling’s 

characteristics P∗ = 𝑃(𝑍) which is the general form of the hedonic price model. These 

characteristics are often decomposed in a vector of structural attributes (e.g., the number 

of rooms), accessibility (e.g., proximity to amenities), environmental quality (such as 

green areas and air pollution), and neighborhood (e.g., education, demographic) 

variables. Hence, the hedonic model is particularly useful for estimating the (implicit) 

value of a given landscape characteristic where demand and supply relations are 

complicated. 

 

Paterson and Boyle (2002) show that visibility measures are important determinants of 

prices and that their exclusion may lead to incorrect conclusions regarding the 

significance and signs of other environmental variables. Their research pioneered the 

use of GIS data to create variables representing the physical extent and visibility of 

surrounding land use/cover features in a hedonic model.  Prior to this view, amenity 

was invariably incorporated into hedonic estimation via the use of dummy variables. A 

review of over 30 view-amenity studies up to the mid-2000's underscores the 

widespread influence of this approach (Bourassa et al 2004). In order to improve on 

best practice, the authors try to identify the multidimensional nature of views generating 

metrics for type of view, scope of view, distance to coast, and aesthetic quality of 

surrounding area for a small cross section of transactions in Auckland, NZ in the year 

1996. In this study, the nature of different vistas is captured by qualitative appraiser 

data and GIS technology is harnessed only for distance measurement. The results of the 

hedonic estimation suggest that willingness to pay for views depends on the quality of 

this amenity. For example, highest-quality sea-front views are found to increase the 

market price of an otherwise comparable home by almost 60% and lowest-quality ocean 

views are found to add about 8%. 

 

The work of Baranzini, and Schaerer (2011) presents one of the first uses of GIS to 
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calculate three-dimensional view variables in order to develop more precise viewshed 

measures at the dwelling unit level. They combine a topographical land cover with a 

surface cover data layer to construct a 3D layer for the city of Geneva, Switzerland that 

accounts for all the elements in the landscape that can impede views. They apply these 

metrics to a sample of 13,000 rentals in the city and find a significant view premium 

for both location in a neighborhood with a water-related view (3%) and for individual 

dwellings with large water-related vistas (up to 57%). Greenspace viewsheds such as 

agricultural land vistas however have much less dramatic effects. 

 

Traditionally, hedonic price models do not account for possible spatial dependence. In 

this paper, we extend hedonic estimation by incorporating spatial lag effects and time 

fixed effects. As house prices are recorded by time and location, ignoring the spatial 

independence and heterogeneous temporal effects of the observation results in serious 

specification problem and biased estimation. We capture these concerns using 

concentrated maximum likelihood estimation, which is consistent when the sample is 

large. Like other location specific variables, viewshed effects are also spatially 

autocorrelated. Identifying the marginal effect of viewsheds conditioned on location is 

possible when the spatially correlated effect is controlled. This has not been applied in 

previous research on viewshed effects.  

 

Additionally, previous viewshed work has not fully exploited recent technical advances 

to refine the effect of pure, a- priori topographic features such as ocean-front or 

mountain views on prices. Even when GIS technology has been adopted, the impact of 

views and scenery on pricing has invariably been captured as a qualitative binary 

variable (Hui et al 2007.Jim and Chen 2009, Sander and Polasky 2009) and using 

laborious data collection methods such as site visits for small areas (Benson et al 1998, 

Luttick 2000). In contrast, this study presents the use of an automated GIS-driven 

method that generates a suite of viewshed measurements for every building nationally. 

Additionally, we take advantage of GIS technology in order to augment DEM (digital 

elevation model) elevation estimates with building obstruction and multi-aspect 

dimensions of visibility. The greater Haifa metropolitan area is a good example of a 

city where building elevation, view obstruction and aspect are key components of 

viewshed measurement.    

 

3. Unraveling Viewshed Utility 

 

We now proceed to underscore the importance of distinguishing between viewshed 

utility and utility derived from accessibility (distance) in hedonic hose pricing.  

 

Assume the utility for a representative consumer living in dwelling unit 𝑖, denoted by 

a binary function 𝑈𝑖(𝑥𝑖, 𝑑𝑖) depends on the amount of visibility 𝑥𝑖 and the distance 

𝑑𝑖  to an amenity A. Further assume 𝑈1 > 0,  𝑈11 < 0,  𝑈2 < 0 . Our econometric 

interest is the estimate the partial derivative of 𝑈1 . The amount of visibility that 

dwelling 𝑖 can acquire 𝑥𝑖 is a function of distance 𝑑𝑖, elevation ℎ𝑖, and unobserved 
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characteristics 𝜖𝑖 such as the direction that dwelling unit 𝑖 faces (aspect, orientation), 

the geometry (shape) of building where dwelling 𝑖 is located and so on.   

𝑥𝑖 = 𝑥(𝑑𝑖, ℎ𝑖 , 𝜖𝑖) 

Besides, the distance to A is also correlated with 𝑥𝑖. So, the utility function can be 

written as:  

𝑈𝑖(𝑥𝑖 , 𝑑𝑖) = 𝑈𝑖[(𝑥(𝑑𝑖, ℎ𝑖 , 𝜖𝑖), 𝑑𝑖(𝑥𝑖)] 

 

Assume the derivatives of 𝑥 on distance and height satisfy 𝜕𝑥/𝜕𝑑𝑖  < 0, 𝜕𝑥/𝜕ℎ𝑖 >

0. It is simple to derive the following first order condition: 

𝜕𝑈𝑖

𝜕𝑑𝑖
= 𝑈1

𝜕𝑥

𝜕𝑑𝑖
+

𝜕𝑈𝑖

𝜕𝑑𝑖
< 0

𝜕𝑈𝑖

𝜕ℎ𝑖
= 𝑈1

𝜕𝑥

𝜕ℎ𝑖
> 0

𝜕𝑈𝑖

𝜕𝑥𝑖
= 𝑈1 +

𝜕𝑈𝑖

𝜕𝑑𝑖

𝜕𝑑𝑖

𝜕𝑥𝑖
> 0

 

We would expect the utility of living in dwelling 𝑖 to be  negatively correlated with 

the distance to A 𝑑𝑖 , and positively correlated with elevation ℎ𝑖 , if ℎ𝑖  does not 

depend on 𝑑𝑖. The hedonic price model predicts that the marginal utility of one-unit 

additional consumption of 𝑥𝑖 can be fully revealed by the marginal price in logs: 

𝜕𝑙𝑜𝑔𝑃𝑖

𝜕𝑥𝑖
= 𝜙

𝜕𝑈𝑖

𝜕𝑥𝑖
= 𝜙𝑢1 + 𝜙

𝜕𝑈𝑖

𝜕𝑑𝑖

𝜕𝑑𝑖

𝜕𝑥𝑖

(1) 

Assume 𝑥, ℎ𝑖 , 𝑑𝑖 can be observed and 𝜙 is a constant. Then 𝜙𝑢1 characterizes the 

elasticity of viewshed effect on dwelling 𝑖’s log price given the distance to the amenity 

A. Equation (1) indicates that 𝜙𝑢1  can be calculated only if we know 𝜙
𝜕𝑈𝑖

𝜕𝑑𝑖

𝜕𝑑𝑖

𝜕𝑥𝑖
. 

Nevertheless, the positive correlation between the amount of viewshed and the log price 

does not necessarily mean that consumer utility is improved by enjoying the view but 

also could result from accessibility.  

 

4. Data Description and Study Area 

 

The data for this study comes from a variety of sources. The first is housing unit sales 

(transaction) data from the Israel Tax Authority (ITA). The original transactions 

database relates to over 800,000 sales nationally for the period 1998-2016. For each 

transaction, the file records sale price, date of sale, and a set of variables describing the 

property's characteristics such as year built, floor space area, type of asset (garden 

apartment, duplex cottage, single home etc.), floor number and address. We use the date 

of sale and year built variables to calculate whether the transaction took place prior to 

construction.  

 

A second source is the Survey of Israel (SoI) 3D GIS buildings layer which contains 

over 1.7m observations nationally and contains information on building height and 

areal footprint (length of perimeter). Of this, more than 480,000 observations relate to 

residential assets. Road and areal distances for reach residential building to a variety of 
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amenities and dis-amenities are calculated (see Table 1 for variables and their sources). 

Other data relate to neighborhood or community attributes of the locales in which the 

dwelling unit is located. For example, we utilize data on school quality and proximity 

provided by Ministry of Education relating to the normalized level of proficiency and 

violence in each school for the years 2008-2013. Each asset is assigned the average 

proficiency and violence scores for elementary and junior-high schools within a 400m 

aerial distance or with the scores of the closest school if the nearest is more than 400m 

away. This produces four proxy variables relating to level of education (2 school types 

x 2 measures). Localized data on distance to polluting industries come from the national 

pollutant register. The elevation of each building comes from the national DEM (digital 

elevation model) model. Descriptive statistics for all variables are presented in Table 2.  

 

Table 1. Distance variables: source and method of calculation 

 

Variable Data Sources Calculation 

Road network distance to the coast 

(m) 

Road network layer, coast 

layer 
Calculated using 

ArcGIS Network 

Analyst extension 

and automated using 

ArcPy. Maximum 

search radius for 

major highways: 

10km 

Road network distance to commercial 

centers (m) Road network layer + 

relevant uses extracted 

from SoI’s land-use 

complexes layer 

 

Road network distance to employment 

centers (m) 

Road network distance to train stations 

(m) 

Road network distance to parks (m) 

Road network distance to major 

highways (m) 
Road network layer 

Aerial distance to cemeteries (m) 

Land-use complexes layer 

from SoI 
Distance of the most 

proximate location 

or complex Maximal 

search radius: 100m 

for schools, parks 

and highways; 250m 

for cemeteries and 

industry complexes; 

500m for pollution 

sources  

Aerial distance to parks (m) 

Aerial distance to industrial complexes 

(m) 

Aerial distance to schools (m) 

Aerial distance to major highways (m) Road network layer 

 

Aerial distance to polluting complex 

(m) 

 

The 2016 Pollutant 

Release and Transfer 

Register from the Ministry 

of Environmental 

Protection, documenting 

aerial pollution by factory, 

regardless of type of 

pollutant. 

Aerial distance to polluting complex 

(m), excluding complexes polluting 

below the registered level 

 

 

 



7 

 

Community socio-economic data (amenities, crimes rates and the like) come from the 

Israel Central Bureau of Statistics (CBS) and are available nationally for Statistical 

Areas (SAs). An SA is a uniform administrative census unit of roughly 3000 inhabitants 

and is the highest level of spatial resolution for which socio-economic data is available. 

The study area comprises the 243 SAs of the greater Haifa metropolitan area. This 

incorporates all the continuous built-up areas in vicinity of the city of Haifa extending 

northwards beyond the metropolitan boundaries to the city of Akko while excluding 

low density areas within the metropolitan boundaries (Fig 1). The presence of missing 

data reduces the number of SA's for actual analysis to 142.  

 

Historically Haifa owes much of its urban development to British Mandate plans to 

make it a central port and hub for Middle East trade in crude oil. Under these plans, 

Haifa saw large-scale development and became an industrial port city. Its large and flat 

coastal bay area became colonized by industrial and infrastructure use. Residential area 

is therefore limited and spreads over the elevated areas of Mount Carmel and the low-

lying northern suburbs (the Krayot areas). Haifa is also a city potentially threatened by 

hazards. The primary natural hazard is the seismic Yagur fault (Levi et al 2015). The 

chief anthropogenic hazard is the cluster of heavy industry installations (petrochemical, 

chemical and oil refinery plants) in the Haifa Bay area (Portnov et al 2009).  

 

The spatial distribution of house prices by SA's is depicted in Figure 1. Significant 

clustering can be observed suggesting the existence of spatial spillover. This will be 

tested more rigorously below. Also apparent is a visible relationship to elevation in that 

higher house price neighborhoods are concentrated in the higher elevation areas of the 

Carmel mountain range.2. 

  

                                                   
2 Note however that elevation is not necessarily synonymous with the well-documented higher-floor 

premium. For example Conroy et al (2013) find that an increase in floor level is associated with more 

than a 2 percent increase in price. However this relationship is quadratic in price suggesting that above 

the mean floor level, house prices increase at a decreasing rate. Hui et al (2012) in contrast find no 

evidence that sea-views are directly related to transaction prices in high-rise apartment buildings. 
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Fig. 1: The Spatial Distribution of Average House Price Per sq m (in Israeli shekels 

2009) by SA in the Haifa Metropolitan Area 

 

 
 

To create a transactions level data base for the study area, the various data sources 

(transactions, assets and buildings) are integrated. Each transaction is assigned to an 

asset (unit) and from there to a building using an id and geographic coordinates. In the 

case of multi-story buildings each asset is also assigned a floor. The panel data of 

housing transactions is unbalanced (n=47855), i.e., there are missing observations for 

some units in some time periods. To make the data workable, repeated transactions are 

averaged if a unit is sold more than once within a year. The descriptive statistics of this 

data set are presented in Table 2. Visibility measures (see below) are linked to the 

transaction data through the id of each individual asset. Each of the nearly 48,000 

transactions in the study area is indexed by year and location and thus the grid 

coordinates of the asset yield the precise address of the location of the transaction (9928 

distinct addresses). Addresses are also linked to one of the 142 SAs. The result is a 

multi-level, pseudo-panel dataset in the sense that there are repeated sales on the same 

assets (housing unit) over time. Frequently transacted units (sold more than 5 times 

during a year) are dropped (903 observations). These indicate the presence of adverse 

selection or statistical error in the unit likely to cause estimation bias. 
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Table 2: Descriptive statistics for variables in the study (N = 47885). 

 

Variable  Mean  Std.Dev.  Min  Max 

Unit Price  8524.544 3705.685 1008.487 94681.79 

Number of Rooms 3.402 1.191 1 10 

Floor space (Square Meter) 73.887 29.349 2 2000 

Building Year 1972.925 18.729 1847 2018 

Year of the Transaction 2008.368 5.212 1998 2016 

Floor Level 2.429 2.272 0 23 

Building Perimeter (meter, North) 23.81501 15.45995 0 238.8899 

Building Perimeter (meter, East) 24.95052 16.70211 0 213.6983 

Building Perimeter (meter, South) 23.74674 15.07674 3.374637 223.0361 

Building Perimeter (meter, West) 25.02694 17.09462 1.478418 248.1052 

Dummy=1 if Orientation is North-south 0.225958  0 1 

Dummy=1 if Orientation is Northeast-

southwest) 0.229933  

0 1 

Dummy=1 if Orientation is East-West 0.250732  0 1 

Elevation 88.551 102.835 -5.8 415 

Average proficiency scores at closest 

elementary school(s) 

.277 .673 -2.573 1.91 

Average proficiency scores at closest 

middle school(s) 

.31 .717 -2.573 1.55 

Average violence level at closest 

elementary school(s)  

.323 .825 -1.784 5.691 

Average violence level at closest middle 

school(s) 

.310           .717 -2.573 1.550 

Dummy=1 if transaction is prior to 

construction date 

.033  0 1 

Dummy=1 if type is apartment  .944  0 1 

Dummy=1 if closest elementary school is 

mixed 

.025  0 1 

Dummy=1 if closest middle school is 

mixed 

.094  0 1 

Visibility     

Coast (lines of sight, r=1km) 0.111462 0.69873 0 9 

Green area (lines of sight, r=1km) 0.394797 0.88502 0 8 

Total visible area (m2, r=1km) 424933.4 494381 0 3122069 

Coast (lines of sight, r=5km) 9.405663 21.68719 0 185 

Green area (lines of sight, r=5km) 4.440079 10.15566 0 93 

Total visible area (m2, r=5km) 7143496 1.01E+07 0 6.88E+07 

Distance to Main Amenities     

Road distance to the coast (meter) 4369.675 2819.703 0 11583 

Road distance to the commercial (meter) 321.174 292.9 0 2779 

Road distance to the employment (meter) 699 443.43 0 3342 
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Road distance to  

the train station (meter) 

3743.142 1842.766 23 10534 

Road distance to the park (meter) 757.989 609.228 0 4096 

Road distance to the main road (meter) 2441.252 1744.088 2 8948 

Aerial proximity to cemeteries (meter) 3753.961 2620.422 20 8117 

Aerial proximity to industry (meter) 226.458 140.977 0 1143 

Aerial proximity to the main road (meter) 574.774 529.648 0 2695 

Aerial proximity to schools (meter) 145.344 105.414 0 867 

Aerial proximity to severe air pollution  2513.552 938.187 526.737 5141.827 

Note: Building perimeter is calculated from the epicenter of the centroid of the building in 4 different 

directions: north, east, south, west. Orientation is determined by the direction where length of building 

is lowest. 
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4.1 Calculating Viewsheds 

 

Capturing visibility via 3D viewsheds is an approach that lends itself to GIS 

applications. Early studies in this genre (see for example Benson 1998, Lake et al 2000, 

Paterson and Boyle 2002) invariably use small samples and laborious data collection 

methods. While DEM-based, they also tend to ignore building obstructions and the 

multi-aspect nature of visibility. Sander and Polasky (2009) for example calculate top 

floor viewsheds with maximum view radii of 1000m for 5000 residential properties in 

Ramsey County Minnesota. They generate a bespoke raster DEM for the study area and 

sum this with an existing 10m DEM for the wider Twin Cities region. This allows them 

to identify 'best views' visible from top floors of properties in their sample. They 

incorporate the resultant view quality metrics such as the extent of the view and visible 

land covers, in their hedonic estimation. Barazani and Schaerer (2011) extend dwelling-

level viewshed calculations using a DEM for the city of Geneva combined with 

complex queries to generate a 3D vista for a 1km radius around the central point of each 

building in their study area. Their viewshed areas however are limited in scope and 

scale. They calculate visibility metrics for 3 observer heights (ground floor, mid-

building and top floor) relating to 7,700 buildings (18,500 dwelling units). Intersecting 

all visible cells with different land use covers allows them to determine the visible land 

uses.    

 

More recently, GIS techniques have combined with computerized geometrics to 

generate a Sky View Factor (SVF), i.e. a metric of the unobstructed area from buildings 

in cities. In highly dense urban areas with buildings of varying heights and complex 

DEMs, this presents a considerable challenge and calls on considerable computing 

resources. Yi and Kim (2017) for example present an automated grid-based approach 

that calls for extracting the relevant geometrical features from each cell estimating their 

SVF using a ray-based (vectorized) method and reprocessing the extracted geometry 

onto a panoramic 3D image of the city.  

 

Our approach is inspired by these studies and utilizes the capabilities of readily 

available GIS extensions such as the ArcGIS Visibility toolset. We use these to 

calculate three measures of visibility, all computed for 1km and 5km visibility ranges: 

the total area visible from a given asset, the number of lines of sight to the coast and 

the number of lines of sight to green areas. The automated procedure for calculating 

these is implemented in Python using the ArcPy library (see Figure 2). It iterates over 

all assets in the study area and includes identifying obstructions, i.e., selecting all 

buildings within a 6km radius from a given asset that were built prior to that asset (step 

1 in Fig 2). The procedure then computes the visibility range, identifying all areas that 

are at least 200m away from the asset but no more than 5km away (step 2 in Fig 2).  

 

We compute two visibility measures. The first relates to total visible area. 3D lines 

emanating from the asset to the edge of the visibility range are constructed using the 

ArcGIS Lines of Sight tool such that the end points of two subsequent lines are 1km 
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apart. This generates 32 Lines of Sight as depicted in step 3 on the right-hand path in 

Fig. 2. The effects of obstructions and the topographical shape of the surface are 

computed such that lines are truncated when they meet an obstacle (see step 4 on the 

right hand path). Finally, the end points of the truncated lines are connected to form a 

simplified polygon and its area represents the total visible area. This is represented as 

the final step on the right-hand side of Fig. 3 and yields a measure of viewshed quantity 

but not quality. The same procedure is adopted for the 1km radius case with the 

maximum length of truncated lines restricted accordingly.  

 

This approach differs to other GIS-generated viewsheds that are based on much 

fewer targets. Osland et al (2020) for example position 4 buoys in the sea to generate 

vista metrics for buildings along the Oslo fiord. The resultant raster image generates 

buoy counts for each dwelling unit along the coastline which proxies for ground level 

view. However, this method cannot account for actual view limitations due to dwelling 

unit aspect (orientation), floors number in multi-floor buildings and view impediments 

due to trees etc. 

 

The second visibility measure considers both quantity and quality. To this end we 

utilize target-based Visibility Analysis. This involves aiming and shooting sight lines 

to specific targets such as the coast or green areas and computing the number of 

uninterrupted lines that this yields. The 5km visibility range is intersected with a given 

target (step 3 in the left-hand path in Fig 2) which can be either the coast (a polyline 

layer) or green spaces (polygons converted to points). Then the Construct Sight Lines 

and Line of Sight tools are used to count the number of sight lines reaching the target 

(steps 4 and 5, left hand side of Fig. 2).  
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Figure 2: Visibility computation process. 
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5. Estimation Strategy 

 

5.1 Identifying the Viewshed effect using SAR 

 

To identify viewshed effects and decouple proximity from visibility, we adopt the 

approach used for analyzing peer effects in social networks (Lee 2007; Bramoulle et al. 

2009). These are invariably riddled with endogeneity issues that impede determining 

the direction of causality between interacting agents and obscure the distinction 

between exogenous (contextual) influences, endogenous (peer) outcomes and 

correlated (similar environment) effects. This 'reflection problem' first highlighted by 

Manski (1995), means that simultaneity in actions induces perfect collinearity. Thus, 

even where social networks models are theoretically identified they can still suffer from 

weak identification in practice. More recent work (Lin 2010) has shown that that the 

spatial autoregression (SAR) model can utilize social network information to identify 

peer (endogenous) and contextual (exogenous) effects, thereby alleviating Manski's 

reflection problem.   

 

We utilize the multi- level structure of the data and the existence of spatial correlation 

to unravel these identification issues. Akin to social network analysis where interacting 

agents have their own specific reference groups defined by individuals whose mean 

attributes exert mutual influence on their outcomes, individual dwelling units are 

similarly nested within buildings that themselves are nested within locales. The error 

components of this structure can be exploited to separate exogenous from endogenous 

influences. 

  

Let 𝑆𝑖  be a vector of unit specific variables including the number of rooms, the year 

of deal, year of building, floor space, and dwelling type. Let 𝑍𝑗 denote a vector of 

location-specific variables such as distance to amenities and elevation. 𝑋𝑖𝑗 denotes the 

viewshed effect which is unit specific but correlated with 𝑍𝑗, which can be written in 

the functional form, 

𝑋𝑖𝑗 = 𝛿𝑍𝑗 + 𝑋̃𝑖𝑗 , 𝐸(𝑋̃𝑖𝑗|𝑍𝑗) = 0  

𝐸(𝑋𝑖𝑗|𝑍𝑗) = 𝛿𝑍𝑗  
 

We are interested in estimating the marginal effect of  E[log( 𝑃𝑖𝑗) |𝑋𝑖], which is denoted 

by coefficient 𝛽2. Traditionally viewshed effects and location variables appear on the 

right-hand side of the estimated (OLS) model as in equation (2). Additionally, positive 

collinearities exist between location-specific variables such as distance to amenities and 

the amenity visibility (such as views of parks and coasts). 

log( 𝑃𝑖𝑗) = 𝛼 + 𝛽1𝑍𝑗 + 𝛽2𝑋𝑖𝑗 + 𝑆𝑖 + 𝑢𝑗 + 𝑣𝑖𝑗    (2) 

A consequence of this multicollinearity is that estimated viewshed effects on house 

prices 𝛽2 tend to be less precise controlling for other independent variables.  
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As a solution we can control for neighborhood effects that could affect visibility using 

the spatial lag of the dependent variable. The intuition is straightforward. If visibility 

increases the value of a housing unit, then a unit with better views will be more 

expensive than another unit in the same location, all other conditions equal. For 

example, a dwelling unit with a sea view will be more expensive than one without a sea 

view, given the proximity to the sea and other location conditions. Indeed, 𝛽2 can be 

identified if we include the average value of housing units in the same location, denoted 

by log(𝑃𝑟𝑖𝑐𝑒𝑙)̃  which is equivalent to a spatial lag that captures the average value of 

housing units in the neighborhood and can be expressed as follows 

𝐸[log(𝑃𝑖𝑗) |𝑍𝑗] ≈
𝟏

𝑁𝑡
∑ 𝑤𝑖𝑗

𝑡

𝑁𝑡

𝑗=1

𝑙𝑜𝑔(𝑃𝑟𝑖𝑐𝑒𝑖𝑛) 

where 𝑁𝑡  is the number of units in the neighborhood, 𝑤𝑖𝑗 = 1 if unit 𝑖 and 𝑗 are 

neighbors. In each period, the spatial weights can be written in a matrix form 𝑊𝑡 =

(𝑤𝑖𝑗
𝑡 ). Therefore, we propose a model incorporating a spatial autoregressive regressor 

(SAR) as follows: 

log( 𝑃𝑖𝑗) = 𝛼 + 𝜌𝐸[log(𝑃𝑖𝑗) |𝑍𝑗] + 𝛽1𝑍𝑗 + 𝛽2(𝛿𝑍𝑗 + 𝑋̃𝑖𝑗) + 𝛽3𝑆𝑖 + 𝑢𝑗 + 𝑣𝑖𝑗    (3) 

Taking the expected price at location 𝑖 on both the right and left hand sides we can get: 

𝐸[log(𝑃𝑖𝑗) |𝑍𝑗] = 𝛼 + 𝜌𝐸[log(𝑃𝑖𝑗) |𝑍𝑗] + 𝛽1𝑍𝑗 + 𝛽2(𝛿𝑍𝑗) + 𝛽3𝐸(𝑆𝑖|𝑍𝑗) + 𝑢𝑗    (4) 

Since 𝐸(𝑆𝑖|𝑍𝑗) = 0, reorganizing equation (4) yields 

𝐸[log(𝑃𝑖𝑗) |𝑍𝑗] =
𝛼

1 − 𝜌
+

𝛽1 + 𝛽2𝛿

1 − 𝜌
𝑍𝑗 + 𝑢̃𝑗   (5) 

Coefficients 𝛽2 , 𝛽3 are identified as they can be uniquely recovered from the restricted 

reduced form  (5) . Strictly speaking, the necessary condition for  𝛽2 , 𝛽3 to be 

identified is that 𝜌𝛽2 ≠ 0, 𝜌𝛽3 ≠ 0 , the matrices I, 𝑊𝑡 , and 𝑊𝑡
2  are linearly 

dependent and no individual unit is isolated (Lee 2007; Bramoulle et al. 2009). 

 

Ignoring spatial dependence can result in model misspecification and biased estimated 

parameters. In the literature, considerable attention has been devoted to the likely 

spatial dependence of error terms in estimating hedonic equations. In a well-known 

example, Pace and Gilley (1997) utilize data from Harrison and Rubinfeld's (1978) 

seminal study to compare ordinary least squares and spatial autoregressions and  

demonstrate significant efficiency gains from the latter.  

 

Given this, we explicitly test for spatial autocorrelation. Both the univariate Moran's I 

statistic for both the SA and location levels suggests that spatial autocorrelation of both 

dependent and independent variables is indeed present (Table 3). All the Moran’s I 
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statistics are significant after standardization (transferred to Z-statistics). 

 

Table 3. Univariate Moran’s I statistics 

 

 Unit 

Price 

Year 

Built 

Rooms Deal 

Type 

Visibility 

of Coast 

Visibility 

of Green 

Area 

Total 

Visible 

Area 

Air 

Pollution 

Statistical 

Area (SA) 

0.5249 0.3467 0.1626 0.3031 0.6444 0.2871 0.4122 0.6636 

Location (x,y 

co-ordinates) 

0.9001    0.5488 0.6083 0.9214  

 
Note: Moran’s I for SA's measures the correlation of the variable and its spatial lag based on an inverse 

distance weight matrix of 142 Statistical Areas. Moran’s I for location uses a contiguity matrix. 

 

5.2 The Basic Econometric Model 

 

We specify a series of hedonic models with the natural log of the sale price as the 

dependent variable and the variables in Table 1 as explanatory variables. The nonlinear 

form is consistent with Rosen's (1974) notion that individuals cannot costlessly 

repackage housing attributes to capture arbitrage opportunities (also discussed by 

Graves et al. 1988). Our basic econometric model can be expressed as follows: 

ytrli = 𝛼𝑡 + 𝜆ytrlĩ + 𝑋𝑡𝑟𝑙𝑖𝛽 + 𝑍𝑟𝑙𝛾 + 𝑉𝑟𝜙 + 𝑢𝑡𝑟𝑙𝑖, (𝜆 < 1)

ytrlĩ =
𝟏

𝑁𝑖𝑡
∑ 𝑤𝑖𝑗

𝑡

𝑁𝑖𝑡

𝑗=1

𝑦𝑡𝑟𝑙𝑗 
     (6) 

We denote the period t = 1, … , T ; statistical area id r = 1, … , R ; location id l =

1, … , L; transaction id i = 1, … , I. The dependent variable is transaction price (in logs) 

for a housing unit, denoted by ytrli. The time trend in average house prices in the study 

area is depicted in Figure 3 and shows the growth in house prices starting in 2008.  

 

In our models, vector Xtrli denotes the attributes of the transactions such as the number 

of rooms, floor number, visibility variables, and type of deal. These are time-variant 

variables, while all other variables are time-invariant. Vector Zrl  relates to the 

attributes of locations such as distance to amenities and air pollution, which are 

associated with an address and are identified by x,y coordinates. Vector Vr  is the 

attributes of statistical areas, including crime rates and amenities. These observations 

are collected for the 142 statistical areas in the Haifa metropolitan area for which data 

are available. 𝑢𝑡𝑟𝑙𝑖  is the error term, which depends on the error component 

assumption and will be discussed in the following section. In the baseline model, 

utrli is i. i. d and ∼ N(0, σϵ). 
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Fig.3: Housing Transaction Price in Haifa and Volume by Year   

 

 

5.3 Spatial Weights 

 

We use contiguity for defining neighbors. We do not use a distance-based measure of 

connectivity due to the sheer size of such a matrix (47855 × 47855) over 19 years. 

Additionally, it is unnecessary to assume spatial correlation between each two 

transactions from different years. Instead, we use first-order pseudo-contiguity matrices 

within a radius of 𝑟 km, i.e., all the transactions within a circle of radius 𝑟 km in the 

same year. Two dwelling units are neighbors (with 1 assigned to a neighbor) if the 

geographic distance between them is lower than 𝑟 km; otherwise, dwelling units are 

not considered as neighbors (with 0 assigned to a non-neighbor). We choose 𝑟 =

0.5km3, so there are 20 neighbors for each unit on average.  

 

Following Baltgai et al (2015) we allow the spatial weight matrix to very over time.   

Since we have different observations (transactions) each year, this matrix differs in size 

for different years. For example, in 2006, 𝑊2006  is relatively small (1572 by 1572) 

whereas in 2009 𝑊2009 it is relatively large (3824 by 3824).  

  

                                                   
3 We do not impose a fixed number of neighbors for each unit. Proposition 2 in Bramoulle et al. (2009) 

points out if all groups have the same size, the group effect cannot be identified. 
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𝑊 = (
𝑊1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝑊𝑇

) 

For each period 𝑡, the entries of spatial weight matrix 𝑊𝑡 satisfy the condition that 

wij
𝑡 = 1 if region j and region i are neighbors and wij

𝑡 = 0 if otherwise.  

 

5.4 Model specifications 

 

Since the data covers almost two decades (1998- 2016), our first model includes time 

fixed effects. These are nested in equation (4) where αt ≠ 0 and β represents the 

coefficients on transaction-specific variables, γ  is a feature of location, and ϕ 

characterizes the attributes of a statistical area. Although our panel data is unbalanced, 

we can still achieve a fixed effect by averaging the values of both the dependent and 

independent variables by different levels of spatial aggregation and time.  

 

To exploit the multi-level random effects and nested error structure of the data we adopt 

an approach pioneered by Baltagi and Bresson (2011) who use maximum likelihood 

panel data estimation in order to incorporate spatial effects (via the error terms) and  

heterogeneity (via random effects).To fully control the correlation of unobserved error 

within different levels of spatial autoregression, Baltagi et al. (2015) extend this 

approach to an unbalanced spatial lag model with nested random effects and apply this 

method to estimate a hedonic housing model based on flats sold in the city of Paris over 

the period 1990-2003.  

 

Earlier research in hedonic house price studies also uses a similar error structure to 

estimate the consumer’s willingness to pay for different characteristics such as clean 

air and proximity to a hazardous waste site (see, for example, Baltagi and Chang 1994, 

Harrison and Rubinfeld 1978, Mendelsohn et al. 1992). Our unbalanced panel consists 

of three hierarchical levels with 𝑟 = 142  statistical areas, each containing 𝐿𝑡𝑟 

second level addresses. Each second-level address contains 𝑀𝑡𝑟𝑙 observations on the 

housing unit. Thus, the total number of observations 𝑁 is  

𝑁 = ∑ ∑ 𝐿𝑡𝑟

𝑅

𝑟=1

𝑇

𝑡=1

= ∑ ∑ ∑ 𝑀𝑡𝑟𝑙

𝐿𝑡𝑟

𝑚=1

𝑅

𝑟=1

𝑇

𝑡=1

(7) 

The error term is given by 

𝑢𝑡𝑟𝑙𝑖 = 𝛿𝑡𝑟 + 𝜇𝑡𝑟𝑙 + 𝜖𝑡𝑟𝑙𝑖 (8) 

where 𝛿𝑡𝑟 is the SA- level random effect, 𝜇𝑡𝑟𝑙 is the location level random effect, 

𝜖𝑡𝑟𝑙𝑖 is the random effect at the dwelling unit level. For the random specification, we 

assume that: 

𝛿𝑡𝑟 ~𝑖. 𝑖. 𝑛. (0, 𝜎𝛿
2) ,

𝜇𝑡𝑟𝑙~𝑖. 𝑖. 𝑛. (0, 𝜎𝜇
2)

𝜖𝑡𝑟𝑙𝑖~𝑖. 𝑖. 𝑛. (0, 𝜎𝜖
2)

, (9) 
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Further, let 𝜌1, 𝜌2 denote the proportion of random effects at the SA and location level 

on the individual error terms respectively, such that 𝜌1 =
𝜎𝜇

2

𝜎𝜖
2 , 𝜌2 =

𝜎𝛿
2

𝜎𝜖
2. SAR Model (6) 

with error components (8), (9) can be estimated by ML (Maximum Likelihood) and 

relates to nested unbalanced panel data with spatial spillover effects as articulated by 

Antweiler (2001). The log likelihood function of this model is provided in Appendix 1.  

 

6. Estimation Results 

 

Given the structure of the spatial panel data, a series of estimations are presented with 

various combinations of temporal and spatial effects. We estimate three non-spatial 

models, and three spatial models as follows:  

 

1a. Time fixed effect   

 𝑦𝑡𝑟𝑙𝑖 = 𝛼𝑡 + 𝑿𝑡𝑟𝑙𝑖𝜷 + 𝜖𝑡𝑟𝑙𝑖 

1b. One-way random effect (statistical area) and time fixed effect  

𝑦𝑡𝑟𝑙𝑖 = 𝛼𝑡 + 𝑿𝑡𝑟𝑙𝑖𝜷 + 𝛿𝑡𝑟 + 𝜖𝑡𝑟𝑙𝑖 

1c. Multi-level random effect (statistical area, location) and time fixed effect 

𝑦𝑡𝑟𝑙𝑖 = 𝛼𝑡 + 𝑿𝑡𝑟𝑙𝑖𝜷 + 𝛿𝑡𝑟 + 𝜇𝑡𝑟𝑙 + 𝜖𝑡𝑟𝑙𝑖 

2a. Spatial time fixed effect (SAR model)   

𝑦𝑡𝑟𝑙𝑖 = 𝛼𝑡 + 𝜆𝑦𝑡𝑟𝑙𝑖̃ + 𝑿𝑡𝑟𝑙𝑖𝜷 + 𝜖𝑡𝑟𝑙𝑖 

2b. Spatial one-way random effect (statistical area) and time fixed effect (SAR) model  

𝑦𝑡𝑟𝑙𝑖 = 𝛼𝑡 + 𝜆𝑦𝑡𝑟𝑙𝑖̃ + 𝑿𝑡𝑟𝑙𝑖𝜷 + 𝛿𝑡𝑟 + 𝜖𝑡𝑟𝑙𝑖 

2c. Spatial multi-level random effect (statistical area, location) and time fixed effect 

(SAR) model 

𝑦𝑡𝑟𝑙𝑖 = 𝛼𝑡 + 𝑿𝑡𝑟𝑙𝑖𝜷 + 𝜆𝑦𝑡𝑟𝑙𝑖̃ + 𝛿𝑡𝑟 + 𝜇𝑡𝑟𝑙 + 𝜖𝑡𝑟𝑙𝑖 

 

Table 4 presents the results of the non-spatial models using full variables and all 

transactions. Model 1a is estimated by OLS and Model 1b and 1c are estimated by 

restricted maximum likelihood (REML). Model 1a is a time fixed effects model without 

random effects and with a log-likelihood of -10062.15. Comparing model 1b and 1c to 

1a, the likelihood values are improved by introducing the random effect in the error 

terms. This tends to shrink the standard errors of the estimated coefficients. This result 

indicates the unobserved error component can be explained by spatial correlation at 

different levels of spatial aggregation. In general, including the error components 

lowers the magnitudes of estimates on transaction-specific variables, including 

viewshed effects but makes no significant difference to distance variables.  

 

Model 1b estimates the nested random-effects model at the statistical area level yielding 

a log-likelihood of -4287.7, which is lower than that for the fully nested statistical area 

and location random effects model presented in model 1c (-1132.42). The LR test 

(𝐻0: 𝜃1 = 0) rejects the null of zero SA effects in the nested error structure. Once again, 

the estimated coefficients have the right sign and are highly significant. The estimated 

nested random effects are 𝜌̂1 = 0.24, 𝜌̂2 = 0.16, which indicates the variance at the 
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SA, location, and individual transaction scales accounts for 17.1%, 11.4%, and 71.4% 

of total variance according to the variance decomposition formula provided in section 

5.4.  

 

To avoid collinearity between visibility and proximity, we control for road distance to 

different kinds of amenities (coast, parks, employment nodes, highways, train station 

etc.). Some of these influences turn out to be negative such as distance to the coast. We 

interpret this counter-intuitive result as suggesting that that proximity and visibility 

should not be confounded. While view of the coast may be driving house prices, this 

does not mean that visibility is synonymous with accessibility. This is especially so in 

the case of cities with hilly topography such as Haifa.  

 

Many of the transaction-specific covariates are significant. Aside from number of 

rooms and type of middle school, all estimates are highly significant. Almost all deal-

specific variables are statistically significant and have the expected signs. In contrast to 

similar studies, floor number shows a negative sign suggesting that a higher-floor 

premium does not exist. This could either mean that the floor effect has a non-

monotonic effect on prices or that urban topography (elevation) swamps-out the floor 

effect. Number of rooms is generally positively correlated with price since it is 

positively correlated with dwelling unit size. In our estimations, floor space 

overshadows number of rooms and the t-statistic of the latter is not significant. As noted, 

elevation is an important factor driving house prices. The city of Haifa is built on a 

mountain ridge and price is related to elevation with respect to topography and not with 

height of building. Consequently, higher buildings are prevalent in the flatter, low-lying 

and generally cheaper parts of the Haifa area. Our estimates indicate that every 10m of 

topographic elevation adds 2-3% to the value of the dwelling unit. The effect of building 

geometry (length of perimeter) and orientation are not found to be significant influences 

of price. 

 

The effect of neighborhood/community attributes is ambiguous. With respect to local 

schools, there is mixed evidence that both proximity and quality of local (elementary 

and middle) schools can impact house prices. The effect of local concentrations of 

polluting industry is counter-intuitively positive. However, this may be an artifact of 

the data that simply uses pollution readings within a 500m radius of noxious plants and 

thereby smokescreens the micro-geography effects that vary across different 

neighborhoods contingent on aspect, wind regimes and relative location on the Carmel 

mountain range (northern versus southern slopes). 

 

Of the viewshed variables, all show a positive effect on house prices with varying levels 

of significance. For example, Model 1a predicts that one percent increase in coastal 

visibility adds around 0.015% to dwelling unit value.  

 

Table 5 presents the spatial counterparts of the models in Table 4. Model 2a is the MLE 

of time fixed effects with spatial autocorrelation. Model 2b gives the MLE results of 
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the random component on statistical areas of an unbalanced spatial lag model. Model 

2c gives the MLE results of an unbalanced spatial nested random-effects model.  

 

When comparing Table 5 with Table 4, the first interesting finding is that spatial 

dependence does not replace the covariance within the unobserved errors. The standard 

errors of both statistical areas and locations are significantly different from zero. This 

indicates the existence of spatial autocorrelation in both the dependent variable and the 

error terms. Using the error component structure cannot therefore solely characterize 

the correlation of the house prices within a neighborhood.   

 

Most estimated coefficients in Table 5 show the same signs as the results in Table 4. 

However, the magnitudes of these estimates are significantly lower. The signs and 

magnitudes of deal-specific coefficients 𝛽  on these significant variables are 

remarkably stable across specifications. The coefficients of location-specific variables 

γ are less significant than their non-spatial counterparts. For example, an additional 

room will increase houses price by roughly 1.5%. The spatial autoregressive parameter 

is approximately 0.5 for each equation and significant at the 5% level. The multilevel 

random effect SAR model better predicts unit prices with a likelihood ratio equal to -

1132.42, which is higher than the one-way random effect SAR model (-4287.7). As in 

Table 4, including spatial lags does not change the error correlation within the 

neighborhood at both the statistical area and location (address) level. With respect to 

accessibility variables, we find that proximity to primary school and public transport is 

inversely related to house prices while proximity to the city center has a direct and 

positive influence. 

 

With respect to viewshed effects, Table 5 illustrates that controlling for spatial effects, 

reduces viewshed importance. Despite this, the estimates show that a one percent 

increase in total visible area within 1km adds 1-2% to dwelling unit value. Similarly, a 

1% increase in coastal view within 5km adds 1% to dwelling unit value However, we 

do not find evidence that the value of a dwelling unit with green area views or large 

total visible area, is any greater than one without these amenities.  
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Table 4. Non-Spatial Hedonic Models 

  
MODEL1a 

 
MODEL 1b MODEL 1c 

 

Log price Coef. z Coef. z Coef. z 

Road Distance 
      

Coast -0.00001  -13.02 -0.00001  -2.5 -0.00001  -0.91 

Commercial 0.00009  16.47 0.00006  9.25 0.00010  9.25 

Employment -0.00002  -3.92 -0.00003  -5.64 -0.00003  -3.27 

Train station -0.00005  -33.18 -0.00001  -1.66 -0.00001  -0.93 

Park -0.00004  -14.7 -0.00003  -6.7 -0.00003  -4.46 

Road 0.00000  1.88 0.00002  3.43 0.00002  2.06 

Aerial Distance 
      

Cemeteries 0.00002  20.08 0.00004  7.09 0.00003  4.94 

Industry 0.00008  6.67 -0.00004  -2.73 -0.00001  -0.31 

Road -0.00007  -15.92 0.00006  6.35 0.00008  5.03 

Schools -0.00005  -3.14 0.00011  6 0.00019  6.52 

Air pollution 0.10308  30.29 0.12473  11 0.14499  7.86 

Deal Specific 
      

Elevation 0.00290  89.15 0.00232  24.7 0.00248  17.47 

Year built 0.00369  43.17 0.00235  29.63 0.00135  17.9 

Rooms -0.00229  -1.69 -0.00140  -1.14 0.00198  1.67 

Floor level -0.00967  -14.22 -0.00500  -7.53 -0.00547  -7.62 

Floor space 0.01214  170.33 0.01064  155.51 0.00915  123.05 

Square of floor space -0.00001  -62.71 0.00000  -59.07 0.00000  -53.94 

Building Perimeter (North) -0.00035  -0.86 -0.00105  -2.88 -0.00123  -1.91 

Building Perimeter (East) -0.00033  -0.8 -0.00017  -0.45 -0.00040  -0.6 

Building Perimeter (South) -0.00048  -1.17 0.00020  0.55 -0.00023  -0.35 

Building Perimeter (West) -0.00062  -1.52 -0.00063  -1.69 -0.00095  -1.43 

Orientation (North-south, 

0/1) 0.00114  0.37 0.00628  2.31 0.00566  1.26 

Orientation (Northeast-

southwest, 0/1) -0.00501  -1.48 0.00214  0.69 0.00064  0.13 

Orientation (East-West, 0/1) -0.00460  -1.52 0.00086  0.32 -0.00364  -0.82 

Apartment (0/1) -0.03264  -3.48 -0.04784  -5.73 -0.05082  -6.66 

Deal before construction 

(0/1) 0.12171  14.82 0.10842  14.31 0.03621  4.64 

Closest Sch.=Elementary 

(0/1) 0.10797  10.49 0.06047  5.03 0.07074  3.85 

Closest Sch.=Middle (0/1) 0.07767  13.41 0.00638  0.8 0.01624  1.34 

Proficiency elementary 

school  0.04817  17.76 0.02270  5.63 0.03115  4.54 

Proficiency middle school 0.00723  3.03 0.00848  2.12 0.00709  1.05 

Violence elementary school  0.01519  7.88 0.01705  5.9 0.02079  4.05 

Visibility       
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Green area (r=1km) 0.00983  2.35 0.00060  0.14 0.00107  0.18 

Coast (r=1km) 0.01543  2.53 0.02750  4.08 0.00706  0.72 

Total visible area (r=1km) 0.03705  8.23 0.00851  1.95 0.02473  4.97 

Green area (r=5km) 0.02052  9.47 -0.00691  -3 -0.00871  -3.21 

Coast (r=5km) 0.01905  11.61 0.01163  6.81 0.00840  4.21 

Total visible area (r=5km) -0.03992  -10.29 -0.00953  -2.5 -0.01981  -4.52 

Observations 47855  
 

47855  
 

47855  
 

Statistical Areas 142  
 

142  
 

142  
 

Random-effects Parameters 
     

Location-Address 𝝆̂𝟐 
    

0.162358 
 

Statistical Area 𝝆̂𝟏 
  

0.230394 
 

0.243799 
 

Dwelling Unit 0.39210  
 

0.261045 
 

0.217882 
 

Log Likelihood  -10062.15  
 

-4287.7 
 

-1132.42 
 

LR test 𝝌𝟐 
  

 11816.14  18281.67 

 
Note: Regression results are estimated by restricted maximum likelihood (REML), also 
known as residual maximum likelihood. 
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Table 5: Spatial Hedonic Models  
MODEL2a 

 
MODEL 2b MODEL 2c 

 

Log price Coef. z Coef. z Coef. z 

Road Distance 
      

Coast -0.00001  -10.86 -0.00001  -2.26 -0.00001  -0.89 

Commercial 0.00007  13.34 0.00005  8.36 0.00010  8.99 

Employment -0.00002  -4.46 -0.00002  -4.51 -0.00003  -3.09 

Train station -0.00004  -27.81 0.00000  -0.89 -0.00001  -0.75 

Park -0.00003  -12.28 -0.00003  -6.82 -0.00003  -4.58 

Road 0.00001  3.38 0.00001  2.27 0.00002  1.71 

Aerial Distance 
      

Cemeteries 0.00001  14.27 0.00003  6.26 0.00003  4.96 

Industry 0.00006  5.53 -0.00003  -2.09 0.00000  -0.24 

Road -0.00005  -10.89 0.00006  6.81 0.00008  5.25 

Schools -0.00001  -0.83 0.00011  6.18 0.00018  6.56 

Air pollution 0.08671  27.01 0.10699  9.84 0.13017  7.45 

Deal Specific 
      

Elevation 0.00213  69.24 0.00199  22.13 0.00228  16.98 

Year of built 0.00299  37.05 0.00208  26.75 0.00135  17.91 

Rooms -0.00192  -1.5 -0.00055  -0.46 0.00200  1.69 

Floor level -0.01090  -16.98 -0.00649  -10 -0.00587  -8.24 

Floor space 0.01112  165.43 0.01011  151.36 0.00914  124.51 

Square of floor space 0.00000  -59.76 0.00000  -56.8 0.00000  -53.76 

Building Perimeter (North) -0.00031  -0.83 -0.00080  -2.26 -0.00111  -1.81 

Building Perimeter (East) -0.00034  -0.87 -0.00023  -0.62 -0.00034  -0.52 

Building Perimeter (South) -0.00020  -0.53 0.00026  0.71 -0.00016  -0.25 

Building Perimeter (West) -0.00034  -0.9 -0.00042  -1.17 -0.00091  -1.43 

Orientation (North-south, 0/1) 0.00426  1.49 0.00732  2.75 0.00611  1.42 

Orientation (Northeast-

southwest, 0/1) -0.00433  -1.35 0.00003  0.01 0.00010  0.02 

Orientation (East-West, 0/1) -0.00427  -1.49 0.00051  0.19 -0.00350  -0.82 

Apartment (0/1) -0.04421  -5 -0.05000  -6.13 -0.05181  -6.81 

Deal before construction (0/1) 0.01149  1.48 0.02974  4.02 0.00816  1.05 

Closest Sch.=Elementary (0/1) 0.10446  10.76 0.05715  4.87 0.06893  3.9 

Closest Sch.=Middle (0/1) 0.06456  11.82 0.00575  0.74 0.01535  1.32 

Proficiency elementary school  0.04051  15.83 0.02260  5.75 0.03039  4.64 

Proficiency middle school 0.01364  6.07 0.01093  2.81 0.00849  1.32 

Violence elementary school  0.01973  10.85 0.01640  5.82 0.01989  4.06 

Visibility       

Green area (r=1km) -0.00057  -0.14 0.00032  0.07 0.00096  0.17 

Coast (r=1km) 0.01353  2.35 0.02629  3.99 0.00824  0.87 

Total visible area (r=1km) 0.03554  8.37 0.00912  2.14 0.02376  4.84 

Green area (r=5km) 0.01659  8.12 -0.00601  -2.67 -0.00856  -3.2 

Coast (r=5km) 0.01547  10 0.01002  6.01 0.00808  4.11 
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Total visible area (r=5km) -0.03657  -9.99 -0.00949  -2.55 -0.01908  -4.42 

SAR Coefficient 0.48330  79.75  0.40500  12.06  0.23500  29.17  

Observations 47855  
 

47855  
 

47855  
 

Statistical Areas 142  
 

142  
 

142  
 

Random-effects Parameters       

Location-Address 𝝆̂𝟐 
    

0.151  
 

Statistical Area 𝝆̂𝟏 
  

0.194  
 

0.223  
 

Dwelling Unit 0.078  
 

0.255  
 

0.218  
 

Log Likelihood  -7685.18  
 

-3151.505 
 

-788.06366 
 

LR test 𝝌𝟐   8461.9  14862.15  

 

Note: Regression results are estimated by concentrated maximum likelihood.  

 

7. Robustness Tests 

 

We begin by testing the consistency of the panel data. Specifically, we test for the 

existence for systematic bias in the missing observations in the unbalanced panel. Since 

the panel data are incomplete, this means that if a dwelling unit is considered an 

observation, we cannot observe the transaction price in each year. ML and LS 

estimation assumes that the data is missing randomly. In contrast, even though these 

estimators can also be modified for unbalanced panels due to missing observations, 

their asymptotic properties, in the event of missing observations, may become 

problematic if the reason why data are missing is not known. To test this, we calculate 

the correlation of average house price and number of transactions per year. It turns out 

there is almost no correlation between them with a correlation coefficient of -0.01786 

and 𝑅2 = 0.0003. 

 

To test the robustness of the estimation results two tests are invoked. The first relates 

to a local differences model where samples are kept only if there are comparable 

observations in the same location or year. The price premium between them and their 

comparable units is explained by the features of the transaction such as viewshed 

variables. Specifically, let log(𝑃𝑟𝑖𝑐𝑒𝑖)̃  be the average price of real neighbors within 

same statistical area (location, year). 

log(𝑃𝑟𝑖𝑐𝑒𝑖)̃ = 𝐸[log(𝑃𝑖𝑗), 𝑋𝑖𝑗 |𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑗 , 𝑌𝑒𝑎𝑟𝑡] (10) 

log(𝑃𝑟𝑖𝑐𝑒𝑖𝑗) = 𝛿𝑡 + 𝜌 log(𝑃𝑟𝑖𝑐𝑒𝑖𝑗)̃  + 𝛽1𝑍𝑗 + 𝛽2𝑋𝑖𝑗 + 𝛽3𝑆𝑖 + 𝑢𝑖     (11) 

 

The local first differenced regression is: 

log(𝑃𝑟𝑖𝑐𝑒𝑖𝑗) − log(𝑃𝑟𝑖𝑐𝑒𝑖𝑗)̃ = 𝛿𝑡 + 𝛽1̃𝑍𝑗 + 𝛽2̃𝑋𝑖𝑗 + 𝛽3̃𝑆𝑖 + 𝑢̃𝑖    (12) 
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The estimation results are presented in Table 6, where Model 3a uses the filtered sample 

of 45,739 transactions when location is controlled. The other 2,116 transactions are 

dropped since they are the only observations at their locations. Model 3b has 37,589 

samples after location and year of deal are controlled. Model 3c has only 5,408 samples 

when floor level is also controlled. The more location variables are controlled, the more 

the estimates of the viewshed effect are free of the influence of location. It turns out 

that coastal views within 5km are a robust and positive influence on house prices when 

all the location variables are controlled. 

 

The second robustness test involves comparing different time intervals in the dataset. 

Since proximity variables are treated as time-invariant, the amenities used for distance 

variables are recorded as recent observations. As city infrastructure changes, so does 

the location of air pollution, schools etc. Although our regressions contain time fixed 

effects, theoretically, the dependent and independent variables are more consistent in 

time in the later periods. This test repeats the regression for different time intervals, 

from 2011-2017, 2015-2017. Results (provided in Appendix 2) show that the signs of 

the main variables of interest are stable. 
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Table 6: Local Differenced Regression  
MODEL3a 

 
MODEL 3b MODEL 3c 

 

Log price Coef. z Coef. z Coef. z 

Road Distance 
      

Coast 0.00000  1.76 0.00000  -3.53 -0.00001  -2.42 

Commercial -0.00003  -5.59 0.00001  1.85 0.00005  2.9 

Employment 0.00000  0.76 -0.00002  -3.72 -0.00003  -3.52 

Train station -0.00001  -4.84 -0.00001  -3.52 0.00000  -0.24 

Park -0.00001  -3.24 -0.00001  -4.21 0.00000  0.56 

Road 0.00000  0.05 0.00000  0.88 0.00000  0.69 

Aerial Distance 
      

Cemeteries 0.00000  -7.15 0.00000  3.34 0.00001  5.98 

Industry 0.00001  1.06 0.00001  0.59 0.00000  -0.06 

Road 0.00001  3.89 -0.00001  -2.19 -0.00002  -1.88 

Schools -0.00001  -0.99 0.00003  1.47 -0.00002  -0.56 

Air pollution 0.00969  3.57 0.02400  6.46 0.01567  1.68 

Deal Specific 
      

Elevation 0.00003  1.02 0.00035  9.67 0.00053  5.45 

Year of built -0.00015  -2.22 0.00077  8.16 0.00075  3.14 

Rooms -0.00564  -5.21 -0.01328  -9.17 -0.02321  -7.42 

Floor level -0.00167  -3.08 -0.00680  -8.98 -0.01010  -5.1 

Floor space 0.00231  39.43 0.00480  59.96 0.00564  13.87 

Square of floor space 0.00000  -7 0.00000  -17.55 -0.00001  -3.51 

Building Perimeter (North) 0.00041  1.28 0.00055  1.25 0.00119  1.12 

Building Perimeter (East) -0.00070  -2.11 0.00063  1.39 -0.00197  -1.78 

Building Perimeter (South) -0.00035  -1.08 -0.00056  -1.25 -0.00078  -0.7 

Building Perimeter (West) 0.00073  2.26 -0.00076  -1.74 0.00114  1.08 

Orientation (North-south, 0/1) 0.00120  0.49 -0.00052  -0.16 -0.00470  -0.55 

Orientation (Northeast-southwest, 

0/1) 0.00411  1.51 -0.00182  -0.48 -0.02550  -2.6 

Orientation (East-West, 0/1) 0.00158  0.65 -0.00257  -0.77 -0.01695  -2.01 

Apartment (0/1) -0.04971  -6.52 -0.08555  -8.2 -0.01198  -0.47 

Deal before construction (0/1) 0.01368  2.09 -0.01445  -1.58 -0.06023  -3.88 

Closest Sch.=Elementary (0/1) 0.02070  2.5 0.07142  6.24 0.01818  0.6 

Closest Sch.=Middle (0/1) -0.00515  -1.11 0.01537  2.36 0.05643  3.53 

Proficiency elementary school  -0.00344  -1.59 0.01694  5.64 0.00016  0.02 

Proficiency middle school 0.01462  7.68 0.00537  2.05 -0.00701  -1.08 

Violence elementary school  -0.00100  -0.65 0.00057  0.27 -0.00321  -0.7 

Visibility       

Green area (r=1km) -0.00333  -1 -0.00687  -1.52 0.00298  0.27 

Coast (r=1km) 0.01570  3.24 0.02409  3.62 0.00398  0.23 

Total visible area (r=1km) 0.02423  6.69 0.02034  3.92 0.00338  0.26 

Green area (r=5km) -0.00321  -1.85 0.00750  3.15 0.00308  0.51 

Coast (r=5km) -0.00591  -4.49 0.00311  1.71 0.01201  2.52 
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Total visible area (r=5km) -0.01261  -4.04 -0.00648  -1.5 0.00444  0.4 

Observations 45,739  
 

37,589  
 

5,408  
 

 

 

 

8. Conclusions 

 

This paper attempts to extend current practice in viewshed analysis and incorporates 

this into hedonic house price modeling. We develop a new automated, GIS-based 

method for quantifying the viewshed effect of amenities such as visibility of coast, 

green areas and total open space and test their impact on repeat sales for house prices 

in Haifa.  

 

The paper makes two contributions. First, from a theoretical perspective, we highlight 

the tendency in hedonic house price studies to confound utility derived from visibility 

(viewshed) with that derived from proximity and suggest a strategy for dealing with 

this. Second, in the realm of spatial econometrics we illustrate how the effect of 

neighborhood and location (address) specific variables and viewshed effects can be 

estimated separately in a hedonic model. The viewshed effect of amenities can be 

identified even they are correlated with other location variables such as the distance to 

amenities. We compute precise measures for the visibility of coast, green and total 

visible open areas and test both spatial and non-spatial hedonic models with multilevel 

random effects.  

 

Our results indicate that OLS estimation, without controlling for spatial effects, 

produces the expected positive viewshed effects. When controlling for spatial effects, 

viewshed importance result is reduced. We also exploit the multi-level structure of the 

data to disentangle the utility derived from proximity with that derived from visibility 

and the identification issues that this implies. In our representative model, a one percent 

increase in total visible area within 1km adds 1-2 percent to the dwelling unit value. A 

one percent increase in coastal views within 5km adds one percent to the dwelling unit 

value.  

 

The role of natural topography is underscored in the analysis. Our results for the city of 

Haifa seem to suggest that for cities characterized by hilly landscapes visibility of an 

amenity can outweigh proximity in determining prices. Visibility seems to be a key 

determinant of house prices when proximity (accessibility) is constrained. Topography 

may also serve to distort the effect of the higher-floor premium prevalent in many cities 

with flat natural landscapes. In those cities, such as Tel Aviv or Chicago, accessibility 

rather than visibility is key. The latter can be constricted very easily through bad 

planning. This calls for the judicial use of land regulation and proactive public-sector 

intervention to preserve viewsheds and their eventual capitalization in house prices.  
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Appendix.1 The Estimation Procedure of Multilevel Error Random Effect Spatial 

Lag Model 

 

Due to the data's multilevel structure, we use a 2-stage process for maximizing the 

likelihood function. If we pool the observations, the loglikelihood is given by: 

𝑙𝑛𝑙 = −
1

2
𝑁𝑙𝑛(2𝜋) −

1

2
ln|Ω| + ln|𝐴| −

1

2
𝑢′Ω−1𝑢 (5) 

where  

𝐴 = 𝐼𝑁 − 𝜆𝑊 

The variance-covariance matrix of the disturbance is defined as follows: 

Ω = 𝐸[𝑢𝑢′] = 𝜎𝜖
2[𝐼𝑁 + 𝜌𝜇𝐽𝜇 + 𝜌𝛿𝐽𝛿] 

Let 𝑿𝑡𝑟𝑙𝑖 = (𝑋𝑡𝑟𝑙𝑖 𝑍𝑟𝑙 𝑉𝑟)′ be a vector of all the independent variables and 𝜷 =

(𝛽, 𝛾, 𝜙) be its coefficient. Let 𝑒 = Ω−
1

2𝑢, 𝑒 = 𝑦∗ − 𝑿∗𝜷∗, 𝑦∗ = (𝐼𝑁 − 𝜆𝑊)𝑦 −

(1 − 𝜃1) 𝑦̅ − (1 − 𝜃2)𝑦̿ 

𝑿∗ = (𝐼𝑁 − 𝜆𝑊)𝑿 − (1 − 𝜃1) 𝑿̅ − (1 − 𝜃2)𝑿̿ 

With 𝜃1 = 1 −
𝜎𝜖

2

𝜎𝜇
2 , 𝜃2 =

𝜎𝜖
2

𝜎𝜇
2 −

𝜎𝜖
2

𝜎𝛿
2, 𝑦̅, 𝑦̿, 𝑿̅, 𝑿̿ are group averages of the dependent and 

independent variables at the regional and location levels. 

 

Following Antweiler (2001) |Ω| can be written as follows: 

|Ω| = (𝜎𝜖
2)𝑁 ∏ 𝜃1

𝑅

𝑟=1

∏ 𝜃2

𝐿𝑟

𝑙=1

 (6) 

𝑙𝑛|𝐴| = ∑ ∑ 𝑙𝑛|1 − 𝜆𝜔𝑡𝑟|

𝑅

𝑟=1

𝑇

𝑡=1

 (7) 

where 𝜔𝑡𝑟 is the 𝑟𝑡ℎ largest eigenvalue of weight matrix of 𝑊𝑡. 

 

At the first stage, the parameters 𝜷  and 𝜎𝜖
2  can be solved from their first order 

maximizing conditions: 

𝜷∗ = (𝑿∗′𝑿∗)−1(𝑿∗′𝑦∗) 

𝑢′𝛺−1𝑢 = 𝑒̂′𝑒̂ = (𝑦∗ − 𝑿∗𝜷∗)′(𝑦∗ − 𝑿∗𝜷∗) (8) 

 

At the second stage, we can write the loglikelihood function as a function of three 

parameters (𝜆, 𝜃1, 𝜃2)  by replacing the components (6) (7) (8) as follow: 
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𝑙𝑛𝑙 = −
1

2
𝑁𝑙𝑛(2𝜋) −

1

2
ln [(𝜎𝜖

2)𝑁 ∏ 𝜃1

𝑅

𝑟=1

∏ 𝜃2

𝐿𝑟

𝑙=1

] + ∑ ∑ 𝑙𝑛|1 − 𝜆𝜔𝑡𝑟|

𝑅

𝑟=1

𝑇

𝑡=1

−
1

2
(𝑦∗ − 𝑿∗𝜷∗)′(𝑦∗ − 𝑿∗𝜷∗) 

The iterative two-stage procedure needed to estimate the parameters of the random 

effects spatial error and spatial lag model bears similarities to the non-spatial random 

effects model (Breusch 1987). The difference is that the concentrated loglikelihood 

function must be maximized for three parameters (𝜆, 𝜃1, 𝜃2) instead of only one (𝜃1). 
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Appendix.2  

 

Table 7: The Estimation of Non-Spatial Hedonic Models for 2011-2017  
MODEL4a 

 
MODEL 4b MODEL 4c 

 

Log price Coef. z Coef. z Coef. z 

Road Distance 
      

Coast -0.00001  -10.86 -0.00001  -2.26 -0.00001  -0.89 

Commercial 0.00007  13.34 0.00005  8.36 0.00010  8.99 

Employment -0.00002  -4.46 -0.00002  -4.51 -0.00003  -3.09 

Train station -0.00004  -27.81 0.00000  -0.89 -0.00001  -0.75 

Park -0.00003  -12.28 -0.00003  -6.82 -0.00003  -4.58 

Road 0.00001  3.38 0.00001  2.27 0.00002  1.71 

Aerial Distance 
      

Cemeteries 0.00001  14.27 0.00003  6.26 0.00003  4.96 

Industry 0.00006  5.53 -0.00003  -2.09 0.00000  -0.24 

Road -0.00005  -10.89 0.00006  6.81 0.00008  5.25 

Schools -0.00001  -0.83 0.00011  6.18 0.00018  6.56 

Air pollution 0.08671  27.01 0.10699  9.84 0.13017  7.45 

Deal Specific 
      

Elevation 0.00213  69.24 0.00199  22.13 0.00228  16.98 

Year of built 0.00299  37.05 0.00208  26.75 0.00135  17.91 

Rooms -0.00192  -1.5 -0.00055  -0.46 0.00200  1.69 

Floor level -0.01090  -16.98 -0.00649  -10 -0.00587  -8.24 

Floor space 0.01112  165.43 0.01011  151.36 0.00914  124.51 

Square of floor space 0.00000  -59.76 0.00000  -56.8 0.00000  -53.76 

Building Perimeter (North) -0.00031  -0.83 -0.00080  -2.26 -0.00111  -1.81 

Building Perimeter (East) -0.00034  -0.87 -0.00023  -0.62 -0.00034  -0.52 

Building Perimeter (South) -0.00020  -0.53 0.00026  0.71 -0.00016  -0.25 

Building Perimeter (West) -0.00034  -0.9 -0.00042  -1.17 -0.00091  -1.43 

Orientation (North-south, 0/1) 0.00426  1.49 0.00732  2.75 0.00611  1.42 

Orientation (Northeast-

southwest, 0/1) -0.00433  -1.35 0.00003  0.01 0.00010  0.02 

Orientation (East-West, 0/1) -0.00427  -1.49 0.00051  0.19 -0.00350  -0.82 

Apartment (0/1) -0.04421  -5 -0.05000  -6.13 -0.05181  -6.81 

Deal before construction 

(0/1) 0.01149  1.48 0.02974  4.02 0.00816  1.05 

Closest Sch.=Elementary 

(0/1) 0.10446  10.76 0.05715  4.87 0.06893  3.9 

Closest Sch.=Middle (0/1) 0.06456  11.82 0.00575  0.74 0.01535  1.32 

Proficiency elementary 

school  0.04051  15.83 0.02260  5.75 0.03039  4.64 

Proficiency middle school 0.01364  6.07 0.01093  2.81 0.00849  1.32 

Violence elementary school  0.01973  10.85 0.01640  5.82 0.01989  4.06 

Visibility       
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Green area (r=1km) -0.00057  -0.14 0.00032  0.07 0.00096  0.17 

Coast (r=1km) 0.01353  2.35 0.02629  3.99 0.00824  0.87 

Total visible area (r=1km) 0.03554  8.37 0.00912  2.14 0.02376  4.84 

Green area (r=5km) 0.01659  8.12 -0.00601  -2.67 -0.00856  -3.2 

Coast (r=5km) 0.01547  10 0.01002  6.01 0.00808  4.11 

Total visible area (r=5km) -0.03657  -9.99 -0.00949  -2.55 -0.01908  -4.42 

Observations 47855  
 

47855  
 

47855  
 

Statistical Areas 142  
 

142  
 

142  
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Table 8: The Estimation of Non-Spatial Hedonic Models for 2015-2017  
MODEL5a 

 
MODEL 5b MODEL 5c 

 

Log price Coef. z Coef. z Coef. z 

Road Distance 
      

Coast -0.00001  -4.71 0.00000  -0.46 0.00000  -0.34 

Commercial 0.00008  5.71 0.00004  2.79 0.00006  3.26 

Employment 0.00001  1.06 -0.00001  -0.55 0.00000  -0.06 

Train station -0.00005  -14.22 -0.00002  -1.43 -0.00002  -1.32 

Park -0.00005  -8.15 -0.00004  -4.18 -0.00005  -3.99 

Road 0.00000  -0.59 0.00001  0.46 0.00000  0.23 

Aerial Distance 
      

Cemeteries 0.00001  3.52 0.00002  3.49 0.00002  3.31 

Industry 0.00008  2.72 -0.00002  -0.73 -0.00003  -0.8 

Road -0.00004  -3.36 0.00001  0.71 0.00002  0.94 

Schools -0.00003  -0.84 0.00013  3.08 0.00015  3.1 

Air pollution 0.14341  17.59 0.17628  8.03 0.18225  7.65 

Deal Specific 
      

Elevation 0.00269  34.17 0.00226  12.49 0.00231  11.99 

Year of built 0.00291  13.72 0.00165  8.46 0.00143  7.55 

Rooms 0.00769  2.2 0.00558  1.79 0.00734  2.4 

Floor level -0.01232  -7.63 -0.00983  -6.38 -0.00985  -6.38 

Floor space 0.01838  39.99 0.01597  36.46 0.01577  35.15 

Square of floor space -0.00005  -20.28 -0.00004  -18.22 -0.00004  -18.31 

Building Perimeter (North) -0.00065  -0.68 -0.00126  -1.49 -0.00095  -0.99 

Building Perimeter (East) 0.00101  1.05 0.00050  0.57 0.00051  0.5 

Building Perimeter (South) -0.00015  -0.16 0.00005  0.05 -0.00034  -0.35 

Building Perimeter (West) -0.00153  -1.61 -0.00111  -1.29 -0.00121  -1.19 

Orientation (North-south, 0/1) -0.00061  -0.08 -0.00156  -0.24 -0.00264  -0.36 

Orientation (Northeast-

southwest, 0/1) 0.01163  1.4 0.01973  2.61 0.01837  2.16 

Orientation (East-West, 0/1) 0.00856  1.16 0.01174  1.78 0.00890  1.19 

Apartment (0/1) -0.14142  -2.39 -0.13659  -2.62 -0.14465  -2.81 

Deal before construction 

(0/1) -0.05494  -1.3 0.06098  1.58 0.06195  1.54 

Closest Sch.=Elementary 

(0/1) 0.11769  3.95 0.08647  2.51 0.09203  2.42 

Closest Sch.=Middle (0/1) 0.07566  5.07 0.03817  1.93 0.04297  1.97 

Proficiency elementary 

school  0.04082  6.2 0.02015  2.16 0.02905  2.76 

Proficiency middle school 0.00620  1.09 0.00051  0.05 0.00014  0.01 

Violence elementary school  -0.00654  -1.42 0.00334  0.5 0.00687  0.9 

Visibility       

Green area (r=1km) -0.00070  -0.07 -0.00551  -0.52 -0.00676  -0.6 

Coast (r=1km) 0.01757  1.14 0.02306  1.42 0.00911  0.51 
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Total visible area (r=1km) 0.05948  5.46 0.03731  3.6 0.04123  3.89 

Green area (r=5km) 0.02660  5.1 0.00906  1.7 0.00556  1.02 

Coast (r=5km) 0.01938  4.81 0.01433  3.61 0.01367  3.34 

Total visible area (r=5km) -0.05990  -6.17 -0.03656  -3.93 -0.03877  -4.08 

Observations 47855  
 

47855  
 

47855  
 

Statistical Areas 142  
 

142  
 

142  
 

 


